Skip to content

MS2LDA Run Module

run

run

run(
    dataset,
    n_motifs,
    n_iterations,
    dataset_parameters,
    train_parameters,
    model_parameters,
    convergence_parameters,
    annotation_parameters,
    preprocessing_parameters,
    motif_parameter,
    fingerprint_parameters,
    save=True,
)

main function to run MS2LDA workflow in a jupyter notebook

Source code in MS2LDA/run.py
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def run(
    dataset,
    n_motifs,
    n_iterations,
    dataset_parameters,
    train_parameters,
    model_parameters,
    convergence_parameters,
    annotation_parameters,
    preprocessing_parameters,
    motif_parameter,
    fingerprint_parameters,
    save=True,
):
    """main function to run MS2LDA workflow in a jupyter notebook"""

    loaded_spectra = filetype_check(dataset=dataset)
    cleaned_spectra = clean_spectra(loaded_spectra, preprocessing_parameters)
    print("Cleaning spectra ...", len(cleaned_spectra), "spectra left")
    feature_words = features_to_words(
        spectra=cleaned_spectra,
        significant_figures=dataset_parameters["significant_digits"],
        acquisition_type=dataset_parameters["acquisition_type"],
    )  # significant digits need to be added in dash.

    # Modeling
    ms2lda = define_model(n_motifs=n_motifs, model_parameters=model_parameters)
    trained_ms2lda, convergence_curve = train_model(
        ms2lda,
        feature_words,
        iterations=n_iterations,
        train_parameters=train_parameters,
        convergence_parameters=convergence_parameters,
    )

    # Mapping
    doc2spec_map = map_doc2spec(feature_words, cleaned_spectra)
    MS2LDA.retrieve_spec4doc = partial(retrieve_spec4doc, doc2spec_map, trained_ms2lda)

    # Motif Generation
    motifs = extract_motifs(trained_ms2lda, top_n=motif_parameter)
    motif_spectra = create_motif_spectra(
        motifs,
        charge=dataset_parameters["charge"],
        motifset_name=dataset_parameters["name"],
        significant_digits=dataset_parameters["significant_digits"],
    )  # output name

    # Motif Annotation and Optimization
    library_matches, s2v_similarity = s2v_annotation(
        motif_spectra, annotation_parameters
    )
    clustered_spectra, clustered_smiles, clustered_scores = hit_clustering(
        s2v_similarity=s2v_similarity,
        motif_spectra=motif_spectra,
        library_matches=library_matches,
        criterium=annotation_parameters["criterium"],
        cosine_similarity=annotation_parameters["cosine_similarity"],
    )
    motif_spectra = add_annotation(motif_spectra, clustered_smiles)
    optimized_motifs = motif_optimization(
        motif_spectra, clustered_spectra, clustered_smiles, loss_err=1
    )
    motif_fps = calc_fingerprints(
        clustered_smiles,
        fp_type=fingerprint_parameters["fp_type"],
        threshold=fingerprint_parameters["threshold"],
    )

    if save:
        actual_output_folder = store_results(
            trained_ms2lda,
            motif_spectra,
            optimized_motifs,
            convergence_curve,
            clustered_smiles,
            doc2spec_map,
            dataset_parameters["output_folder"],
        )

        # Save additional viz data
        if n_motifs < 500:
            # near the end of `run()` (or right before calling save_visualization_data)
            parameters_for_viz = {
                "n_motifs": n_motifs,
                "n_iterations": n_iterations,
                "dataset_parameters": dataset_parameters,
                "train_parameters": train_parameters,
                "model_parameters": model_parameters,
                "convergence_parameters": convergence_parameters,
                "annotation_parameters": annotation_parameters,
                "motif_parameter": motif_parameter,
                "preprocessing_parameters": preprocessing_parameters,
                "fingerprint_parameters": fingerprint_parameters,
            }
            save_visualization_data(
                trained_ms2lda,
                cleaned_spectra,
                optimized_motifs,
                doc2spec_map,
                actual_output_folder,
                run_parameters=parameters_for_viz,
            )

    return motif_spectra, optimized_motifs, motif_fps

store_results

store_results(
    trained_ms2lda,
    motif_spectra,
    optimized_motifs,
    convergence_curve,
    clustered_smiles,
    doc2spec_map,
    output_folder="MS2LDA_Results",
)

Save MS2LDA results to a new folder. If 'output_folder' already exists, we automatically create a new folder by appending '_1', '_2', etc.

Returns:

Name Type Description
str

The actual output folder name used (which may be different from the input if renamed)

Source code in MS2LDA/run.py
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
def store_results(
    trained_ms2lda,
    motif_spectra,
    optimized_motifs,
    convergence_curve,
    clustered_smiles,
    doc2spec_map,
    output_folder="MS2LDA_Results",
):
    """
    Save MS2LDA results to a new folder. If 'output_folder' already exists,
    we automatically create a new folder by appending '_1', '_2', etc.

    Returns:
        str: The actual output folder name used (which may be different from the input if renamed)
    """
    curr_dir = os.getcwd()

    # Check if output_folder already exists
    # increment suffix until we find a folder name that does not exist
    if os.path.isdir(output_folder):
        base = output_folder
        i = 1
        while os.path.isdir(f"{base}_{i}"):
            i += 1
        new_output_folder = f"{base}_{i}"
        print(
            f"Warning: Folder '{base}' already exists. Creating new folder: '{new_output_folder}'."
        )
        output_folder = new_output_folder

    # Create the new folder
    os.mkdir(output_folder)
    os.chdir(output_folder)

    # Store M2M files
    store_m2m_folder(motif_spectra, "motifs")
    print("m2m folder stored")

    # Plot + save the convergence curve
    convergence_curve_fig = plot_convergence(convergence_curve)
    convergence_curve_fig.savefig(
        "convergence_curve.png", dpi=300, bbox_inches="tight", pad_inches=0.2
    )
    plt.close(convergence_curve_fig)
    print("convergence curve stored")

    # Create + save the network
    network_fig = create_network(optimized_motifs, significant_figures=2)
    nx.write_graphml(network_fig, "network.graphml")
    print("network stored")

    # Save motif figures
    os.mkdir("motif_figures")
    show_annotated_motifs(
        optimized_motifs, motif_spectra, clustered_smiles, savefig="motif_figures"
    )

    # Save trained model + doc2spec_map
    trained_ms2lda.save("ms2lda.bin")
    with open("doc2spec_map.pkl", "wb") as outfile:
        pickle.dump(doc2spec_map, outfile)

    # Save MotifDB outputs
    ms1_motifDB_opt, ms2_motifDB_opt = motifs2motifDB(optimized_motifs)
    store_motifDB(ms1_motifDB_opt, ms2_motifDB_opt, name="motifset_optimized.json")
    ms1_motifDB, ms2_motifDB = motifs2motifDB(motif_spectra)
    store_motifDB(ms1_motifDB, ms2_motifDB, name="motifset.json")

    os.chdir(curr_dir)

    return output_folder