Visualization Module¶
MS2LDA Visualisation¶
MS2LDA_visualisation
¶
compute_coherence_values
¶
compute_coherence_values(spectra_path, limit, start, step)
Compute c_v coherence for various number of topics
Parameters:¶
dictionary : Gensim dictionary corpus : Gensim corpus texts : List of input texts limit : Max num of topics
Returns:¶
model_list : List of LDA topic models coherence_values : Coherence values corresponding to the LDA model with respective number of topics
Source code in MS2LDA/Visualisation/MS2LDA_visualisation.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
General Visualisation¶
visualisation
¶
create_interactive_motif_network
¶
create_interactive_motif_network(
spectra,
significant_figures,
motif_sizes,
smiles_clusters,
spectra_cluster,
motif_colors,
file_generation=False,
)
Generates a network for the annotated optimized spectra, after running Spec2Vec annotation, if clicking in a node it will shot the spectrum and the molecule associated with it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spectra
|
list
|
list of matchms.Spectrum.objects; after Spec2Vec annotation |
required |
significant_figures
|
int
|
number of significant figures to round the mz values |
required |
motif_sizes
|
list
|
list of sizes for the |
required |
Returns:
Name | Type | Description |
---|---|---|
network |
Graph
|
network with nodes and edges, spectra and structures |
Source code in MS2LDA/Visualisation/visualisation.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
create_network
¶
create_network(
spectra, significant_figures=2, motif_sizes=None, file_generation=False
)
Generates a network for the motifs spectra, where the nodes are the motifs (output of LDA model) and the edges are the peaks and losses of the spectra. The size of the nodes can be adjusted with the motif_sizes refined annotation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spectra
|
list
|
list of matchms.Spectrum.objects; after LDA modelling |
required |
significant_figures
|
int
|
number of significant figures to round the mz values |
2
|
motif_sizes
|
list
|
list of sizes for the |
None
|
Returns:
Name | Type | Description |
---|---|---|
network |
Graph
|
network with nodes and edges |
Source code in MS2LDA/Visualisation/visualisation.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
show_annotated_motifs
¶
show_annotated_motifs(
opt_motif_spectra, motif_spectra, clustered_smiles, savefig=None
)
Show side-by-side RDKit molecule images from clustered SMILES, and plot motif vs. optimized motif.
- If in a Jupyter notebook, we'll try the 'Notebook-friendly' style.
- If not in Jupyter, we'll switch to a headless backend (no GUI windows), skip plt.show(), and just close figures if not saving.
Source code in MS2LDA/Visualisation/visualisation.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
|
LDA Dictionary¶
ldadict
¶
generate_corpusjson_from_tomotopy
¶
generate_corpusjson_from_tomotopy(
model,
documents,
spectra,
doc_metadata,
min_prob_to_keep_beta=0.001,
min_prob_to_keep_phi=0.01,
min_prob_to_keep_theta=0.01,
filename=None,
)
Generates lda_dict in the similar format as in the previous MS2LDA app.
Source code in MS2LDA/Visualisation/ldadict.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
save_visualization_data
¶
save_visualization_data(
trained_ms2lda,
cleaned_spectra,
optimized_motifs,
doc2spec_map,
output_folder,
filename="ms2lda_viz.json",
min_prob_to_keep_beta=0.001,
min_prob_to_keep_phi=0.01,
min_prob_to_keep_theta=0.01,
run_parameters=None,
)
Creates the final data structure needed by the MS2LDA UI
(clustered_smiles_data, optimized_motifs_data, lda_dict, spectra_data)
and saves it to JSON in output_folder/filename
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trained_ms2lda
|
LDAModel
|
the trained LDA model in memory |
required |
cleaned_spectra
|
list of Spectrum
|
final cleaned spectra |
required |
optimized_motifs
|
list of Spectrum
|
annotated + optimized motifs |
required |
doc2spec_map
|
dict
|
doc-hash to original Spectrum map |
required |
output_folder
|
str
|
folder path for saving the .json |
required |
filename
|
str
|
name of the saved JSON (default "ms2lda_viz.json") |
'ms2lda_viz.json'
|
min_prob_to_keep_beta
|
float
|
threshold for storing topic-word distribution in beta |
0.001
|
min_prob_to_keep_phi
|
float
|
threshold for storing word-topic distribution in phi (used for overlap calc) |
0.01
|
min_prob_to_keep_theta
|
float
|
threshold for doc-topic distribution in theta |
0.01
|
Returns:
Type | Description |
---|---|
None |
Source code in MS2LDA/Visualisation/ldadict.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
|
Motifset Similarity Plotting¶
plot_MotifsetSimilarity
¶
vis_motifset_similarity
¶
vis_motifset_similarity(
motifset_a, motifset_b, names=["First", "Second"], save=False
)
compares two set of motifs and draw lines between similar ones
Parameters:
Name | Type | Description | Default |
---|---|---|---|
motifset_a
|
list
|
a list of indices which have a similarity to motifset_b |
required |
motifset_b
|
list
|
a list of indices which have a similarity to motifset_a |
required |
names
|
list
|
names for motifsets |
['First', 'Second']
|
saves
|
True or False
|
parameter if generated plot should be saved |
required |
Returns:
Type | Description |
---|---|
None |
Source code in MS2LDA/Visualisation/plot_MotifsetSimilarity.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|